Voltage-Controlled Current Source

Elementrix Classes

Voltage-Controlled Current Source

With a voltage across the input, you can control the amount of current output.

The VCCS dependent source has a proportionality constant **g**, called the **transconductance (ratio of the change in the output current to the change in the input voltage).**

Example:

Let's assume some values for the components:

```
Input Voltage (V<sub>in</sub>): 10 volts
```

Transconductance (g): 0.002 Siemens (2 mS)

Calculations:

Using the formula for the VCCS:

 $I_{out} = g \cdot V_c$

Substitute the given values:

 $I_{out} = (0.002S) \cdot (10V)$

l_{out}=0.02A

Therefore, with an input voltage of 10 volts and a VCCS transconductance (g) of 0.002 Siemens, the output current (I_{out}) would be 0.02 amperes in this example.

This example demonstrates how a Voltage-Controlled Current Source can generate an output current that is proportional to a controlling voltage. The transconductance (g) represents the proportionality constant in this context.

SUBSCRIBE, SHARE, COMMENT