Current Divider Rule

Elementrix Classes

Current Divider Rule

Let's consider a simple parallel circuit with two resistors, R_{1} and R_{2}, connected in parallel, and a voltage source (V) connected across the combination.

> Resistance of opposite branch
> Formula: $\mathrm{I}_{X}=I_{T} \times \frac{\text { Resistance of opposite branch }+ \text { Resistance of current branch }}{}$

1. Define the Resistances:

$$
\begin{aligned}
& R_{1}=3 \mathrm{ohm} \\
& R_{2}=6 \mathrm{ohm}
\end{aligned}
$$

2. Calculate Total Resistance ($\mathrm{R}_{\text {total }}$):

$$
\begin{aligned}
\frac{1}{R_{\text {total }}}= & \frac{1}{R_{1}}+\frac{1}{R_{2}} \\
\frac{1}{R_{\text {total }}}= & \frac{1}{3}+\frac{1}{6}=\frac{2+1}{6}=\frac{3}{6}=\frac{1}{2} \\
& R_{\text {total }}=2 \Omega
\end{aligned}
$$

2. Calculate Total Current ($\mathrm{I}_{\text {total }}$):

$$
I_{\text {total }}=\frac{V}{R_{\text {total }}}=\frac{12}{2}=6 \mathrm{~A}
$$

$$
I_{\text {total }}=6 \mathrm{~A}
$$

3. Apply Current Divider Rule for Each Resistor to Calculate

 Individual Branch Currents:Use the current divider rule for each resistor:
For \mathbf{R}_{1} :

$$
\begin{gathered}
I_{R_{1}}=I_{\text {total }} \times \frac{R_{2}}{R_{2}+R_{1}} \\
I_{R_{1}}=6 \times \frac{6}{6+3}=6 \times \frac{6}{9}=\frac{36}{9}=4 \mathrm{~A} \\
I_{R_{1}}=4 \mathrm{~A}
\end{gathered}
$$

For $\mathbf{R}_{\mathbf{2}}$:

$$
\begin{gathered}
I_{R_{2}}=I_{\text {total }} \times \frac{R_{1}}{R_{1}+R_{2}} \\
I_{R_{2}}=6 \times \frac{3}{3+6}=6 \times \frac{3}{9}=\frac{18}{9}=2 \mathrm{~A} \\
\quad I_{R_{2}}=2 \mathrm{~A}
\end{gathered}
$$

This means that in the given parallel circuit, 4 amperes of current flows through the 3 -ohm resistor $\left(R_{1}\right)$, and 2 amperes flows through the 6 -ohm resistor $\left(\mathrm{R}_{2}\right)$.

पढ़िए और पढ़ाइये

SUBSCRIBE, SHARE, COMMENT

