SUBJECT: BASIC ELECTRONICS

Voltage Divider Rule

Elementrix Classes

Voltage Divider Rule

Let's consider a simple series circuit with two resistors, R_1 and R_2 , connected in series, and a voltage source (V_{total}) connected across the combination.

1. Define the Voltages and Resistances:

 $V_{total} = 10$ volts $R_1 = 3\Omega$ $R_2 = 5\Omega$

2. Calculate Total Resistance (R_{total}):

 $R_{total} = R_1 + R_2 = 3 + 5 = 8\Omega$

3. Apply Voltage Divider Rule for R₁:

$$V_1 = V_{total} imes rac{R_1}{R_{ ext{total}}} = 10 imes rac{3}{8} = rac{30}{8} = 3.75 \, volts$$
 V_1 = 3.75 volts

4. Apply Voltage Divider Rule for R₂:

$$V_2 = V_{total} imes rac{R_2}{R_{total}} = 10 imes rac{5}{8} = rac{50}{8} = 6.25 \, volts$$
 V_2 = 6.25 volts

This means that in the given series circuit, 3.75 volts is dropped across the 3-ohm resistor (R_1), and 6.25 volts is dropped across the 5-ohm resistor (R_2). The sum of these individual voltages equals the total voltage (V_{total}), confirming the conservation of energy in the circuit.

SUBSCRIBE, SHARE, COMMENT