Voltage Divider Rule

Elementrix Classes

Voltage Divider Rule

Let's consider a simple series circuit with two resistors, R_{1} and R_{2}, connected in series, and a voltage source ($\mathrm{V}_{\text {total }}$) connected across the combination.

1. Define the Voltages and Resistances:

$$
\begin{aligned}
& \mathrm{V}_{\text {total }}=10 \text { volts } \\
& \mathrm{R}_{1}=3 \Omega \\
& \mathrm{R}_{2}=5 \Omega
\end{aligned}
$$

2. Calculate Total Resistance ($\mathrm{R}_{\text {total }}$):

$$
R_{\text {total }}=R_{1}+R_{2}=3+5=8 \Omega
$$

3. Apply Voltage Divider Rule for $\mathbf{R}_{\mathbf{1}}$:

$$
\begin{gathered}
V_{1}=V_{\text {total }} \times \frac{R_{1}}{R_{\text {total }}}=10 \times \frac{3}{8}=\frac{30}{8}=3.75 \text { volts } \\
V_{1}=3.75 \text { volts }
\end{gathered}
$$

4. Apply Voltage Divider Rule for $\mathbf{R}_{\mathbf{2}}$:

$$
\begin{gathered}
V_{2}=V_{\text {total }} \times \frac{R_{2}}{R_{\text {total }}}=10 \times \frac{5}{8}=\frac{50}{8}=6.25 \text { volts } \\
\mathrm{V}_{2}=6.25 \text { volts }
\end{gathered}
$$

This means that in the given series circuit, 3.75 volts is dropped across the 3 -ohm resistor (R_{1}), and 6.25 volts is dropped across the 5 -ohm resistor $\left(R_{2}\right)$. The sum of these individual voltages equals the total voltage ($\mathrm{V}_{\text {total }}$), confirming the conservation of energy in the circuit.

पढ़िए और पढ़ाइये

SUBSCRIBE, SHARE, COMMENT

