SUBJECT: BASIC ELECTRONICS

Diode Current Equation

Elementrix Classes

Diode Current Equation

The diode current equation, commonly known as the Shockley diode equation (after physicist William Shockley), describes the currentvoltage relationship in a semiconductor diode. The equation is given by:

$$I = I_s \left(e^{rac{V}{nV_T}} - 1
ight)$$

□ I - Diode Current:

Represents the current flowing through the diode.

□ I_s - Reverse Saturation Current:

- I_s is the reverse saturation current, a small current that flows when the diode is reverse-biased.
- It accounts for the minority carriers present in the semiconductor material even when there is no forward bias.
- Its value depends on the diode material and temperature.

e - Euler's Number:

- e is a mathematical constant approximately equal to 2.71828.
- It is the base of the natural logarithm and appears in the exponential term of the equation.

□ V - Voltage Across the Diode Terminals:

- V is the voltage applied across the diode terminals.
- In forward bias, V is positive; in reverse bias, V is negative.

□ n - Ideality Factor:

- The ideality factor (n) is a dimensionless parameter reflecting the non-ideal behavior of the diode.
- It typically ranges from 1 to 2. For an ideal diode, n equals 1.
- A higher n value indicates increased non-ideal characteristics.

\Box V_T - Thermal Voltage:

• V_T is the thermal voltage, calculated as KT

q

- k (Boltzmann constant) $\approx 1.38 \times 10^{-23} J/K$
- q (elementary charge) $\approx 1.6 \times 10^{-19} C$
- T (temperature) $\approx 273 K + 25^{\circ}C = 298 K$

Example:

An Si diode has I_s =10nA operating at 25 C. Calculate I_D for a forward bias of 0.6 V.

Solution:

$$I_D = I_S \left(e^{rac{V_D}{nV_T}} - 1
ight)$$

Given: $I_s = 10 \times 10^{-9} A$ V_D = 0.6 V n = 2

As we know,
$$\ V_T = rac{KT}{q}$$
 $T = 273\,K + 25^\circ C = 298\,K$

$$V_T = rac{1.38 imes 10^{-23} imes 298}{1.6 imes 10^{-19}} = 0.0257 \, V_T$$

$$I_D = 10 imes 10^{-9} \Biggl(e^{ rac{0.6}{2 imes 0.0257}} - 1 \Biggr)$$

$$I_D = 1.17 m A$$

SUBSCRIBE, SHARE, COMMENT