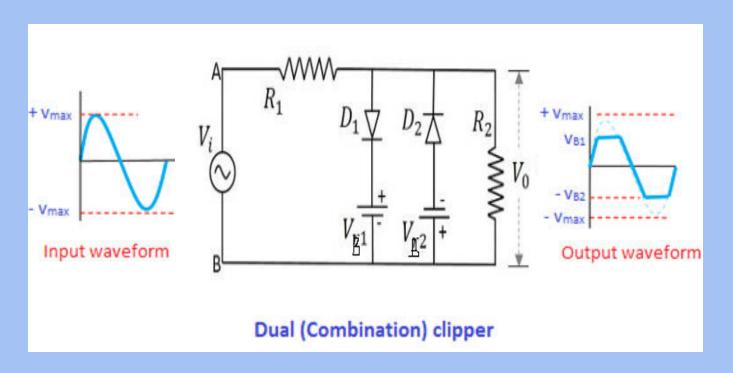
Dual Combination Clipper


Elementrix Classes

Dual Combination Clipper

□ Sometimes it is desired to remove a small portion of both positive and negative half cycles. In such cases, the dual clippers are used.

☐ The dual clippers are made by combining the biased shunt positive clipper and biased shunt negative clipper.

Let us consider a dual clipper circuit in which a sinusoidal ac voltage is applied to the input terminals of the circuit.

During positive half cycle:

During the positive half cycle, the diode D_1 is forward biased by the input supply voltage V_i and reverse biased by the battery voltage V_{B1} . On the other hand, the diode D_2 is reverse biased by both input supply voltage V_i and battery voltage V_{B2} .

Initially, the input supply voltage is less than the battery voltage. So the diode D_1 is reverse biased by the battery voltage V_{B1} . Similarly, the diode D_2 is reverse biased by the battery voltage V_{B2} . As a result, the signal appears at the output. However, when the input supply voltage V_i becomes greater than the battery voltage V_{B1} , the diode D_1 is forward biased by the input supply voltage. As a result, no signal appears at the output.

During negative half cycle:

During the negative half cycle, the diode D_1 is reverse biased by both input supply voltage V_i and battery voltage V_{B1} . On the other hand, the diode D_2 is forward biased by the input supply voltage V_i and reverse biased by the battery voltage V_{B2} .

Initially, the battery voltage is greater than the input supply voltage. Therefore, the diode D_1 and diode D_2 are reverse biased by the battery voltage. As a result, the signal appears at the output.

When the input supply voltage becomes greater than the battery voltage V_{B2} , the diode D_2 is forward biased. As a result, no signal appears at the output.

पढ़िए और पढ़ाइये

SUBSCRIBE, SHARE, COMMENT